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The linear viscoelastic and equilibrium rheooptical behaviour of the polyurethane network 
(poly(2-methyloxirane), terminated with 4,4'-methylenebis(phenyl isocyanate) and crosslinked 
with 2,2-bis(hydroxymethyl)-1,4-butanediol was investigated in the main transition and rubber
like region within the temperature range from - 30 to + 90°C. The temperature dependences of 

the chain dimensions, d In ~/dT = - 0'3.10- 3 K-l, and of the optical anisotropy of a statisti
cal segment, din i':.rx/dT = -0'5 . 10- 3 K-l, in the rubberlike region were determined; these 
values are independent of deformation. A continuous dependence of superimposed mechanical 
and optical curves on time, especially in the proximity and inside the rubberlike region, can be 
obtained by introducing a correction for the change in the dimensions and in the optical aniso
tropy with temperature into the method of reduced variables, in accordance with the theory of 
the viscoelastic rheooptical behaviour of polymeric networks suggested earlier. In the rubberlike 
region a further decrease with time is observed in the superimposed curves, or in the optical and 
mechanical relaxation spectrum; the temperature dependence of the shift factor exhibits a change 
in the slope above 75°C. 

The deformational birefringence of amorphous polymers is determined by the same motions of 
macromolecules or their parts which are also responsible for the respective viscoelastic behaviour . 
Since the birefringence determines the measure of molecular orientation, simultaneous measure
ment of the mechanical and optical relaxation processes leads to a better understanding of the res
pective molecular mechanisms. The time-temperature superposition principle, commonly in use 
in the treatment of deformation data 1 , has also been applied to the birefringence data in the case 
of both amorphous2 

- 5 and semicrystalline6 
- 8 polymers. Only in a few cases, however, a vertical 

shift of the experimental data was used when applying the principle of superposition to optical 
data2 - 4 ,8, similarly to the treatment of mechanical measurements. 

The ideal network theory does not consider intermolecular interactions, but by introducing 
the reference state it was possible to express the effect of intramolecular interactions determined 
by non-zero rotational energy. In our preceding paper we generalized the molecular theory of the 
mechanical9 and optical10 viscoelastic behaviour of ideal networks for a case when the external 
force is applied in the isotropic state differing from the state of network formation. The generali
zation included in the rheooptical functions effects connected with a change in the internal energy 
of chains and the deformational effect of the solvent. One of the consequences of such modifi
cation is the prediction of the magnitude of the vertical shift of rheooptical functions in the super-

Col'!ection Czechoslov. Chern . Common . [Vol·. 42] . (1977) 



Behaviour of a Polyurethane Network 1153 

position, which depends on the temperature dependence of the chain dimensions. This effect was 
experimentally verified on the mechanical behaviour of poly(n-butyl methacrylate) networks11

• 

This paper reports an experimental investigation of the effect of the temperature 
dependence of the chain dimensions on the viscoelastic rheooptical· behaviour 
of chains using as an example a polyurethane network consisting of poly(2-methyl
oXirane), 4,4' -methylenebis(phenyl isocyanate) and 2,2-bis(hydroxymethyl)-1,4-buta
nediol. A special attention is devoted to the effect of the magnitude of the vertical 
mechanical and optical shift on the detailed form of superimposed curves obtained 
by the time-temperature superposition. 

THEORETICAL 

Phenomenological Theory 

If a sample in the isotropic dry state is stretched to a constant relative deformation 
I> = (I). - lid)/Iid, then in the linear viscoelastic region the relaxation of stress 
(related to a deformed cross-section S).) and of the birefringence iln(t) = nil - ill. (re
lated to a deformed thickness d).) is given by 

(J(t) = E(t) . E, resp. iln(t) = B(t) . E , (1) 

where I). and lid respectively are the deformed and the initial length of the sample, 
nil andnl. respectively are the refractive indices in a direction parallel or perpendicular 
respectively .to the direction of elongation, and E(t) and B(t) respectively are the 
Young modulus or the optical relaxation function (deformational-optical function). 
The f~nctions E(t) and B(t) can be transformed into rheooptical viscoelastic spectra 
by using the equations12 (for crosslinked systems) 

f
+CO 

E(t) = Ee + -00 H(m)e- t
/
r d log r, (2) 

and 

f
+CO 

B(t) = Be + -00 H(O)e- t
/
r d log r, 

where H(m) and H(O) respectively are the mechanical and optical tensile spectrum, 
Ee and Be respectively are the equilibrium values of the mechanical and optical 
relaxation functions, and r is the relaxation time. Using Eq. (1), it is possible tode
fine the stress-optical function e(t) = iln(t)/(J(t), which can also be expressed 
bY' means of the stress-optical retardation spectrum L(O) in the form 

(3) 

Collection Czechoslov. Chem; Commun. [Vol. 42] [1977] 



1154 I1avsky, Dusek: 

where Cg and Ce respectively are the values of the stress-optical coefficient charac
teristic of the glass and rubberlike state. 

Molecular Theory 

The introduction of reference chain dimensions into the molecular theory · of the 
viscoelastic rheooptical behaviour led to the following equations relating the 
stress, u, and the birefringence, An, of a dry network9 , lo 

N 

U(A, t) = flSA = Vi ,dkT<exi~d > [A2 - (V,JVi,d)r l] (1 + Ie-lIto) (4a) 
n=2 

N 

(1 + I e- 1/ tn
) (4b) 

n=2 

where f is force, A is relative elongation, Vi ,d is the number of chains in a dry 
isotropic volume, VA. and Vi ,d respectively are volumes of the sample in the deformed 
and in the isotropic state, k is the Boltzmann constant, T is temperature, N is the 
number of submolecules in the chain, Aex = ex l - ext is the difference between the 
main polarizabilities of the statistical segment, 'tn is the relaxation time, t is time and 

<ex~,d> = rfJrris the dilatation factor (~ and rI respectively are mean square 
end-to-end distances in the isotropic and reference states). The temperature de-

pendence of 11 differs from the temperature dependence of~, and Aex is also tempe
rature-dependent. Eqs (4a) and (4b) predict for the stress-opdcal function that 

C(t) = An(A, t) = (n
2 

+ 2)2 ~ Aex = C
e 

; 

U(A, t) n 45kT 
(5) 

hence, C(t) is independent of time, of the content of the crosslinks and of the re
ference state of the network. 

By comparing Eqs (4a) and (4b) with (1), one obtains the following equations 
for the functions E(t) and B(t) at small deformations (.Ie ~ 1): 

N 

E(t) = 3Vi,dkT<ex~,d > (1 + Ie-Il t n
) , (6a) 

n=2 

(n2 + 2)2 2n N 
B(t) = 3v. - -- -Aex<ex~ >(1 + Ie- tl tn) 

I,d n 45 I,d n=2 ' 
(6b) 
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from which the rheooptical spectra can be calculated using Eq. (2): 

1155 

(7a) 

(7b) 

where P is the degree of polymerization of the chain, and ~~ is the monomeric 
frictional coefficient. It follows from Eq. (7 b) that the theory predicts the same time 
dependence for the mechanical and optical relaxation spectra. Since the proportional
ity constant of Eq. (7b) is the same as in Eq. (5), the spectrum J.50) from Eq. (3) 
must be zero within the whole time interval. 

The change in the internal energy of the chain with temperature in the rubber

like region can be quantitatively characterized by the factor k(m) = d In ~jdT 
(which as a rule is constant for the given polymer), for which it holds, using the 
constant length 1 and pressure p from Eq. (4a): 

k(m) = [-d In (Je/ T )] 
dT p,l 

13 (8) 

here, 13 is the temperature volume expansion coefficient of the sample, f is the equi
librium force value. Under the same conditions and using the temperature de
pendence of the equilibrium birefringence value Ane (Eq. (4b)), we have for the 
factor k(O) = d In\Aex\/dT 

k(O) = [d In IAnel] k(m) 13).,3 _ 3n
2 + 2 

+ + 3 Y -2 ' 
d T p.1 )., - VJVi ,d n + 2 

(9) 

y = (ljn) (dnjdT) being the coefficient of the temperature change of the refractive 
index. 

From Eqs (6a) and (6b), the theory predicts the following reduced variables in the 
time-temperature superposition of the rheooptical functions measured at a tempera
ture T and reduced to the temperature To: 

Ep(t) = E(t) (TojT) (t!TojeTY/3 exp [k(m)(T - To)] against tja(To, T), (10) 

Bit) = B(t) (QTofeT)1/3 (Xo/X) exp [(k(m) - k(O») (T - To)] against tja(To, T), 

(11) 

Cp(t) = C(t) (TjTo) (XojX) exp [ - k(O)(T - To)] against tja(To, T), (12) 
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where the index p stands for the functions reduced to To and a(To, T) is the shift 
factor, Q is density, X = [(il2 + 2)2/il]T and Xo = [(il2 + 2Y/il}o. 

EXPERIMENTAL 

Sample Preparation 

The polyurethane network was prepared from a prepolymer obtained by reacting 1 mol of OH
-terminated poly(2-methyloxirane) (Mn = 1200) with 2 mol of 4,4'-methylene-bis(phenyl iso
cyanate) and from 2,2-bis(hydroxymethyl)-1,4-butanediol as a crosslinking agent. The reaction 
occurred between teflon plates in the bulk state at 70°C for 10 h; the ratio of the NCO/OH groups 
was 1 : 1. Purification of the starting compounds and the network preparation have been described 
in detail elsewhere13 • After completion of the polymerization the network was extracted with 
benzene and dried to constant weight at reduced pressure. Samples 5 X 1 X 0·1 cm3 were used 
in the measurements. 

Photoelastic Characteristics 

The photoelastic characteristics were measured by using an apparatus described earlier13 ; the 
force was measured with a force inductive transducer connected with a bridge (Hottinger Baldwin 
Messtechnik, FRG) and recorded with a recorder. The birefringence I'ln was determined from the 
optical retardation, /5, in de-Senarmont's arrangement, /5 = - tP/2 = 21t I'lnd/}.o where }.o is 
the wavelength (546·1 nm), tP is the extinction angle, and d is the sample tickness. tP was determined 
from the minimum of the intensity of the passing light recorded with a photomultiplier connected 
with a recorder. The deformation was determined by a centesimal indicator. The measurements 
were carried out in nitrogen in a thermostated cylinder; the temperature was maintained with an 
accuracy of ±0·2°C. Two types of photoelastic measurements were performed: 

a) Dependence of force and of the extinction angle on temperature: The sample was deformed 
to a constant length (). = 1·0-1·4) at room temperature; after that its temperature was raised 
to 75°e. The sample was maintained at constant temperature until the force and intensity of light 
had reached constant values (time interval c. 1 h), after which fe (force) and tPe (extinction angle) 
were determined. The temperature was reduced (by c. 7°) and the whole procedure repeated up 
to T = 20°e. After that a reverse temperature cycle from 20°C to 75°C was examined. The tem
perature dependences of the equilibrium force values fe (T) and of the extinction angle values 
tPe(T) or the tPe/(fe/T) values were used in the determination of the coefficients k(m) and k(O). 

Eq. (9) in our arrangement gives 

k(O) = k(m) + [d In I tPel/dT]p,l + [(P/2) (}.3 + 1)/ (}.3 - 1)] - y[(3/i2 + 2)/02 + 2)]. (13) 

By combining Eqs (8) and (13) we also obtain 

k(O) = [d In {I tPel /(fe/T)} /dT]p, 1 + P/2 - y(3n- 2 + 2) /(n- 2 + 2). (/4) 

Eqs (13), (14) together with Eq. (8) were used to obtain k(m) and k(O). 

b) Linear viscoelastic behaviour: Stress and birefringence relaxation were measured within the 
time interval 5-600 s and at temperatures from -30° to 90°e. The constant deformations (e) 

used were 0·002 in the low-temperature region and 0·02 in the rubberlike region. The Young mo
duh.!s was determined from the equation E(t) = }.f(l)/e Si,d; the optical relaxation function 
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B(t) = (}"o/rr.) (},,1/2/di ,df.) arc sin (I(t)/K)1/2, where I(t) is the time dependence of light intensity, 
Si,d is the initial cross-section, and K is the proportionality constant determined from I(t') and 
the extinction angle <fJ(t)' at the end of the experiment12 at a time t' = 600 s at each constant 
temperature. In calculating E(t) and B(t) correction was taken for the deformation of the force 
transducer alone and for the device used in applying the deformation; these corrections were 
important mainly at low temperatures in the range of high E(t) values. The time dependence of 
the stress-optical function C(t) = B(t)/E(t) was also determined using the functions E(t) and B(t). 

Characterization of Volume Changes of the Refractive Index 

The volume expansion coefficient of the sample in the rubberlike state P (7·S. 10-4 K- 1
) was 

determined from the linear expansion (P = 3w); w was determined experimentally in the phuto
elastic apparatus so that at each temperature within the interval 20- SO°C the length of the sample 
corresponding to zero force was determined. The measurements were carried out in the directions 
of increasing and decreasing temperatures. The refractive index Ii = 1·510 at 20°C was determined 
with an Abbe refractometer. The thermal expansion coefficient of the refractive index was deter
mined using an approximative equation14 (Ii - I)To = (n - Ih [1 + P(T - To)], which in 
our case gives)' """ - /3/3. 

RESULTS AND DISCUSSION 

Temperature Dependence of the Chain Dimensions and of the Optical Anisotropy 

of the Statistical Segment 

Fig. 1, in which the temperature dependence of viscoelastic rheooptical functions 
measured at a constant time t' = 600 s has been plotted, shows that in the rubber
like region at T> 800 e there is a decrease in the modulus or in the optical relaxa-

-20 20 ·C 60 

FIG. 1 

Dependence of the Modulus E(t') (MPa), Optical Relaxation Function B(t') and Stress-Optical 
Function C(t') (MPa -1) Measured at t' = 600 s on Temperature 

o E(/') values, • B(t') values, ® 10 X C(t') values. 
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1158 Ilavsky, Dusek: 

tion function; the temperature dependence of the chain dimensions and of the optical 
anisotropy was therefore determined within the interval 200 e < T < 80°C. 

A typical example of the temperature dependence of equilibrium photoelastic 
characteristics at a constant length corresponding to A = 1·3 at T = 500 e is given 
in Fig. 2. The dependences of In fe/Tand In CPe on Tin the region of higher A(A ~ 1'2) 
were practically linear; in the region of smaller elongations (1'05 and 1'1) these 
dependences were curved, as a consequence of a change in the initial length [i,d , 

and thus also in A with temperature. These dependences were used in the determina
tion of slopes at various A (corresponding to 50°C): 

k 
din (Je/T)/dT, 10- 4 K- 1

: 

dIn tPe/dT, 10-4 K- 1 : 

din [tPe/(Je/T)J/dT, 10- 4 K- 1
: 

-0·6,--------;r---,--- .----, 

I n(f.lr)~ 

-0·5 

FIG. 2 

Example of the Dependences of (felT), 

Extinction Angle tPe and [tPe/(f.IT)] on 
Temperature 

A. ~ 1'3, 0 decrease in temperature, • 
increase in temperature. 

1·05 1·1 1·2 1·3 1·4 
49·2 19·7 8·9 0 1·3 
61·7 31·0 18·7 13·5 12·0 
12·7 11·8 10·3 13-5 11·1 

B 12 

20 

- t-----j- - _.----+ - -. 

--L-____ ._~ 

2 4 A 6 

FIG. 3 

Dependence of the Temperature Characte
ristics of Force or of the Extinction Angle 
on the Deformation Functions A and B 

A = 1/(;.3 - 1), B = (;.3 + 1)/(;.3 - 1) 

(Eqs (8) and (13»; 0 Values read off at 
decreasing temperature, • values read off at 
increasing temperature. 
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Their dependence on the deformation functions defined by Eqs (8) and (13) is given 
in Fig. 3. The slopes of linear dependences correspond to the experimentally de
termined 13 and 13/2; from the intercept on the y-axis and Eqs (8), and (13) we de
termined k(m) = -- O' 3 . 10- 3 K -1 and k(O) = - O· 5 . 10- 3 K -1 which already is inde
pendent of deformation. The same k(O) can also be obtained from Eq. (14). From 
k(m) one may estimate the mean value of that part of force which corresponds to the 
contribution of internal energy, fu , to the total force, fe , within the temperature 
range under investigation, using fu/ fe = Tk(m) = - 0·1. fu determined by us is 
similar to the fu values determined for similar polyurethane networks l5

. 

Time- Temperature Superposition 

The time dependences of rheooptical functions in the rubberlike region are given 
in detail in Figs 4 and 5 after vertical corrections given by Eqs (10) and (11). The refe
rence temperature To = - 3°C and the already determined values of the factors 
k(m) and k(O) were used in the correction. In applying the superposition method 
to experimental data (Figs 6, 7), one must use a vertical correction given by Eqs (10) 
through (12), particularly in the treatment of data in the rubberlike region. At the 

FIG. 4 

Dependence of the Reduced Modulus ~p(l) 
(MPa) in the Rubberlike Region on Time 
t(s) for To = - 3°C 

Numbers at curves denote the measure
ment temperatures in °C. 
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log8, (I) 

-2'05 

-2'15 

2 1091 

F·G.5 

Dependence of the Reduced Optical Relaxa
tion Function Bp(t) in the Rubberlike Region 
on Time t(s) for To = - 3°C 

Temperatures denoted as in Fig. 4. 
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same time that part of the vertical shift in the reduction of the modulus which is 
determined by the temperature dependence of the chain dimensions amounts to c. 10% 
of its total value (vertical shift for T = 88'7°C reduces the total value of E(t) by c. 26%). 
The temperature dependence of optical anisotropy participates by c. 60% of the total 
value of the vertical shift of the optical relaxation function B(t) (vertical shift raises 
the value of the function B(t) at T = 88'7°C by c. 5%). Similarly to the modulus, 
the factor TjTo plays also a decisive role in the vertical correction of the stress
-optical function C(t); the temperature dependence of anisotropy represents c. 15% 
of the total correction which raises C(t) for T = 88'7°C by c. 40%. 

The dependence of the shift factor log a(To, T) on temperature is shown in Fig. 8. 
One can see that the values of the mechanical shift factor (obtained from the shift 
of the modulus Ep(t)) and of the optical shift factor (obtained from Bp(t)) are the 
same within the limits of experimental error. Also the shift factor obtained by the 
treatment of the stress-optical function Cit) has the same values as the preceding 
two shift factors in the region in which it could be comparatively well determined 
(T ~ 45°C). The dependence of the shift factors on temperature within the interval 
-30 < T< 75°C can be described by the Williams-Landel-Ferry equation with the 
variable parameter Ts (ef.1) assuming that Ts = 30°C; in the temperature region 
T> 75°C the shift factor increases again, and the dependence does not obey the 
WLF equation any more. 

It can be said, therefore, that particularly for the treatment of data in the rubberlike 
region (T> 10°C) vertical corrections are necessary, and they influence in an im-

-6 -4 -2 10 12 
logt/a(To.r) 

FIG. 6 

Superimposed Dependences of the Reduced Modulus Ep(t) (MPa), Reduced Optical Relaxation 
Function Bp(t) and Reduced Stress-optical Function 10 X Cp(t) (MPa -1) on Time tja(To, T) (s) 
for To = - 3°C. 
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portant manner the shift factors (Figs 4, 5). The inclusion of the temperature change 
in the chain dimensions and of the temperature dependence of optical anisotropy 
of the statistical segment in the vertical shift when using the time-temperature 
superposition leads to a smaller scattering of the superimposed curves. 

Viscoelastic Characteristics and the Mechanical and Optical Spectra 

The course of the superimposed curve of the Young modulus Ep(t) (Fig. 6) is typical 
of an amorphous polymer. The limiting value of the modulus in the glassy state 
(at short times) is usually assigned to distorsional effects, such as a change in the 
valence angles, or to motions of short parts of the chain. The birefringence originat
ing in this mechanism, called "distorsional birefringence", is positive and leads 
to positive values of the optical relaxation functions Bp(t) and of the stress-optical 
function Cp(t). With increasing time there is an onset of motion of longer chain 

FIG. 7 

t.u 
0\ 
o 

10 12 14 
log t/a(To,r) 

-190 

co 
0\ 
.9 

-195 

-215 

Dependence (in detail) of Superimposed Curves of the Functions Ep(t) (MPa), Bp(t) and Cp(t) 
(MPa -1) in the Rubberlike Region on Time t/a(To, T) (s) for To = -3°C 

Points denoted in accordance with temperatures in Fig. 4. 
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sections, which leads to a pronounced decrease in the modulus in the transition 
region and also to a decrease in the total birefringence value. The theory predicts 
a stress-optical function independent of time (Eq. (5)), which can actually be observed 
in Fig. 6 within the time range tJa(To, T) > 103 s. A detailed investigation of the 
dependence of the modulus Ep(t) on time in the rubberlike region (Fig. 7) leads 
to a conclusion that after the main transition there is only a short time range within 
which the modulus is constant; after that, another secondary decrease in the modulus 
with time sets in (for T> 70°C). The course of the optical relaxation function 
in this range is similar to that of the modulus (Fig. 7); since the velocity at which 
both functions, Ep(t) and Bp(t), decrease is approximately the same, the stress-optical 
function Cp(t) is practically independent of time in this region. This indicates the 
orientational origin of molecular mechanisms, responsible for the secondary de
crease in the two functions, Ep(t) and Bp(t). One of possible explanations of the time 
dependence of Eit) and Bit) situated deep in the rubberlike region for t/a(To, T) > 
> 109 s can be seen in the sliding of hydrogen bonds between urethane groups under 
stress14•16• 

The viscoelastic spectra were calculated by the second-approximation method 
of Schwarzl and Staverman17 and are given in Fig. 9. At short times the mechanical 
relaxation spectrum H(m) passes through a maximum; in the time interval r = 
= 102 -104 s it has the theoretically predicted slope -1/2 (ci. Eq. (7a)). The slope 
-1/2 can still be observed for the time interval r = 106 -108 s. These two regions 
are displaced from each other by c. 1·5 decades and their behaviour resembles 

-10 

-30 30 ·c 90 

FIG. 8 

Dependence of the Shift Factor log a(To, T) 

on Temperature 
o Values obtained by shifting Ep(t), • 

values obtained by shifting B/t), (8) values 
obtained by shifting Cp(t), -- Williams
-Landel- Ferry equation with the parameter 
Ts = 30°C. 
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that of an amorphous system with entanglements18
. On the other hand, however, 

within the whole main transition there is no region long enough to allow the optical 
spectrum H(O) to possess the slope -1/2 as predicted by Eq. (7b), not even in the 
part in which Cp(t) is practically independent of time. In the range of long times the 
spectrum H(O) increases, similarly to H(m). The retardation optical spectrum nO) 

passes through a maximum approximately in that interval of shorter times in which 
the slope of the log H(m)-log r dependence is -1/2. In the range of longer times, 
where the slope of log H(m)-log r dependence is still -1/2, the spectrum nO) rapidly 
decreases. For longer times log r > 8, nO) is practically negligible, in accordance 
with (5). This fact also suggests an orientation origin of the molecular motions 
responsible for the increase in the spectra H (m) and H(O) in this range of the retarda
tion times. 

Using the stress-optical coefficient C = 0,33.10- 2 MPa- 1 determined at 60°C, 
one can calculate from Eq. (5) the magnitude of the optical anisotropy of the sta
tistical segment ~C( = 8·95 . 10 - 24 cm - 3. This value is approximately four times 
higher than for poly(2-methyloxirane) crosslinked with ct,ct'-dicumylene peroxide 
and sulphur19 •2 o (Mw = 1'8.106), where ~(J. = 1,99.10- 24 cm- 3

, and for a solu
tion of poly(2-methyloxirane) (Mw = 0'9.106

) in cycJohexanone2o
, where ~(J. = 

= 2,5.10- 24 cm- 3 . This could be due to the contribution by urethane groups 
and/or to strong intermolecular interactions between them 13. 

logH"" 

-5 

-8 

FIG. 9 

Dependence bf the Mechanical Relaxation Spectrum H(m) (MPa), Optical Relaxation Spectrum 
H(O) and Optical Retardation Spectrum L (0) (MPa -1) on Time ,(s) for To = - 3°e 

o H(m) values, • H(O) values, ® L(O) values, ---- - slope -1/2. 
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